科目: 來源: 題型:
【題目】
(1)先求解下列兩題: ①如圖①,點B,D在射線AM上,點C,E在射線AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度數;
②如圖②,在直角坐標系中,點A在y軸正半軸上,AC∥x軸,點B,C的橫坐標都是3,且BC=2,點D在AC上,且橫坐標為1,若反比例函數 的圖象經過點B,D,求k的值.
(2)解題后,你發現以上兩小題有什么共同點?請簡單地寫出.
查看答案和解析>>
科目: 來源: 題型:
【題目】某班有50位學生,每位學生都有一個序號,將50張編有學生序號(從1號到50號)的卡片(除序號不同外其它均相同)打亂順序重新排列,從中任意抽取1張卡片.
(1)在序號中,是20的倍數的有:20,40,能整除20的有:1,2,4,5,10(為了不重復計數,20只計一次),求取到的卡片上序號是20的倍數或能整除20的概率;
(2)若規定:取到的卡片上序號是k(k是滿足1≤k≤50的整數),則序號是k的倍數或能整除k(不重復計數)的學生能參加某項活動,這一規定是否公平?請說明理由;
(3)請你設計一個規定,能公平地選出10位學生參加某項活動,并說明你的規定是符合要求的.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,某公司有三個住宅區可看作一點,A,B,C各區分別住有職工30人、15人、10人,且這三個住宅區在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設一個?奎c,為使所有的人步行到?奎c的路程之和最小,那么該?奎c的位置應設在( )
A. 點A B. 點B
C. A,B之間 D. B,C之間
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y1=ax2+bx+c(a≠0)與x軸相交于點A,B(點A,B在原點O兩側),與y軸相交于點C,且點A,C在一次函數y2= x+n的圖象上,線段AB長為16,線段OC長為8,當y1隨著x的增大而減小時,求自變量x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,點E是AD上的一點,有AE=4,BE的垂直平分線交BC的延長線于點F,連結EF交CD于點G.若G是CD的中點,則BC的長是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知AD∥BC,AB∥EF,CD∥EG,且點E在直線AD上,點F,H,G在直線BC上,EH平分∠FEG,∠A=∠D=110°,線段EH的長是不是兩條平行線AD,BC之間的距離?為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等邊三角形的邊長為4厘米,長為1厘米的線段
在
的邊
上沿
方向以1厘米/秒的速度向點
運動(運動開始時,點
與點
重合,點
到達點
時運動終止),過點
、
分別作
邊的垂線,與
的其他邊交于
、
兩點.線段
在運動的過程中,點
、
、
、
圍成的圖形的面積為
平方厘米,運動的時間為
秒.則大致反映
與
變化關系的圖像是( )
A. .
C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點P從點Q出發,沿射線QN以每秒1cm的速度向右移動,經過t秒,以點P為圓心, cm為半徑的圓與△ABC的邊相切(切點在邊上),請寫出t可取的一切值(單位:秒)
查看答案和解析>>
科目: 來源: 題型:
【題目】四邊形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分別繞直線AB,CD旋轉一周,所得幾何體的表面積分別為S1 , S2 , 則|S1﹣S2|=(平方單位)
查看答案和解析>>