科目: 來源: 題型:
【題目】如圖,已知邊長為4的正方形ABCD,P是BC邊上一動點(與B、C不重合),連結AP,作PE⊥AP交∠BCD的外角平分線于E.設BP=x,△PCE面積為y,則y與x的函數關系式是( 。
A.y=2x+1
B.y= x﹣2x2
C.y=2x﹣ x2
D.y=2x
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,菱形ABCD的對角線BD、AC分別為2、2 ,以B為圓心的弧與AD、DC相切,則陰影部分的面積是( 。
A.2 ﹣
π
B.4 ﹣
π
C.4 ﹣π
D.2
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:拋物線C1:y=x2 . 如圖(1),平移拋物線C1得到拋物線C2 , C2經過C1的頂點O和A(2,0),C2的對稱軸分別交C1、C2于點B、D.
(1)求拋物線C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結論;
(3)如圖(2),將拋物線C2向m個單位下平移(m>0)得拋物線C3 , C3的頂點為G,與y軸交于M.點N是M關于x軸的對稱點,點P(﹣ m,
m)在直線MG上.問:當m為何值時,在拋物線C3上存在點Q,使得以M、N、P、Q為頂點的四邊形為平行四邊形?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1),在Rt△ABC,∠ACB=90°,分別以AB、BC為一邊向外作正方形ABFG、BCED,連結AD、CF,AD與CF交于點M.
(1)求證:△ABD≌△FBC;
(2)如圖(2),已知AD=6,求四邊形AFDC的面積;
(3)在△ABC中,設BC=a,AC=b,AB=c,當∠ACB≠90°時,c2≠a2+b2 . 在任意△ABC中,c2=a2+b2+k.就a=3,b=2的情形,探究k的取值范圍(只需寫出你得到的結論即可).
查看答案和解析>>
科目: 來源: 題型:
【題目】瑤寨中學食堂為學生提供了四種價格的午餐供其選擇,這四種價格分別是:A.3元,B.4元,C.5元,D.6元.為了了解學生對四種午餐的購買情況,學校隨機抽樣調查了甲、乙兩班學生某天購買四種午餐的情況,依據統計數據制成如下的統計圖表:
甲、乙兩班學生購買午餐的情況統計表
品種 | A | B | C | D |
甲 | 6 | 22 | 16 | 6 |
乙 | ? | 13 | 25 | 3 |
(1)求乙班學生人數;
(2)求乙班購買午餐費用的中位數;
(3)已知甲、乙兩班購買午餐費用的平均數為4.44元,從平均數和眾數的角度解答,哪個班購買的午餐價格較高?
(4)從這次接受調查的學生中,隨機抽查一人,恰好是購買C種午餐的學生的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】為響應“美麗河池 清潔鄉村 美化校園”的號召,紅水河中學計劃在學校公共場所安裝溫馨提示牌和垃圾箱.已知,安裝5個溫馨提示牌和6個垃圾箱需730元,安裝7個溫馨提示牌和12個垃圾箱需1310元.
(1)安裝1個溫馨提示牌和1個垃圾箱各需多少元?
(2)安裝8個溫馨提示牌和15個垃圾箱共需多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】請在圖中補全坐標系及缺失的部分,并在橫線上寫恰當的內容.圖中各點坐標如下:A(1,0),B(6,0),C(1,3),D(6,2).線段AB上有一點M,使△ACM∽△BDM,且相似比不等于1.求出點M的坐標并證明你的結論.
M( , )
證明:∵CA⊥AB,DB⊥AB
∴∠CAM=∠DBM=度.
∵CA=AM=3,DB=BM=2
∴∠ACM=∠AMC(),∠BDM=∠BMD(同理),
∴∠ACM= (180°﹣)=45°.∠BDM=45°(同理).
∴∠ACM=∠BDM
在△ACM與△BDM中,
∠CAM=∠DBM
∴△ACM∽△BDM(如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB=2,BC=4,AD=6,M是CD的中點,點P在直角梯形的邊上沿A→B→C→M運動,則△APM的面積y與點P經過的路程x之間的函數關系用圖象表示是( 。
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O外一點,過點C作⊙O的切線,切點為B,連結AC交⊙O于D,∠C=38°.點E在AB右側的半圓上運動(不與A、B重合),則∠AED的大小是( 。
A.19°
B.38°
C.52°
D.76°
查看答案和解析>>